时间:9月28日(周日)15:00-16:00
地点:勤园20-518
报告摘要:
We present a single, dimension–independent framework that links four–dimensional duality–invariant nonlinear electrodynamics to two–dimensional integrable sigma models. Both sectors are shown to obey the same first–order Courant–Hilbert equation, solved by a common generating function and an auxiliary–potential formulation. Within this structure, a discrete $\varphi$–parity acts as a selection rule, organizing deformation series into integer versus fractional powers. Two commuting deformations—an irrelevant parameter $\lambda$ and a marginal parameter $\gamma$—admit universal flow representations that recover root–$T\bar T$ dynamics and extend them in a controlled way. The construction yields closed–form families (generalized Born–Infeld, logarithmic, and $q$–deformed) and a new integrable model, all realized in 2D and 4D. These results replace case–by–case analyses with a unified route to solvable nonlinear theories, with immediate relevance to gauge dynamics, string–inspired effective actions, and integrable models.
报告人简介:
何松,宁波大学基础物理与量子科技研究院教授。研究方向包括引力理论、量子场论、弦论与数学物理,主要致力于通过弦论与场论中的对偶性加深对引力本质的理解,并利用规范/引力对偶方法研究量子场论中的非微扰问题,特别是在量子色动力学(QCD)和强关联凝聚态系统中的应用。
地址:杭州市余杭区余杭塘路2318号勤园19号楼
邮编:311121 联系电话:0571-28865286
Copyright © 2020 如意直播
公安备案号:33011002011919 浙ICP备11056902号-1